Outline:
I. Cross-link between accommodation and convergence
II. Measurement

Calculated ratio $=\mathrm{IPDcm}+\mathrm{Vdm} *(\mathrm{Pn}-\mathrm{Pf})$
Gradient ratio= Delta convergence/delta accommodation

Stimulus ratio= conv resp/accom stim $=3.61 / 1$
Response ratio= conv resp/accom resp=4.0/1
III. Linearity, Stability \& Dynamics

IVI. Maddox components of accommodation that stimulate AC/A
V. Factors that change the AC/A

Age, Change IPD, Fatigue, Drugs
VI. Convergence accommodation ratio (CA/C)

Measurement, Effects of age, Dynamics
IX. Vertical vergence and lateral gaze linkage
X. Cyclo vergence and vertical gaze
XI. Anomalies of Vergence

Accommodative Convergence Coordinates the near response

Müller accommodative vergence

Magnified Position of Right eye to show details more clearly.

Ideal vs empirical AC/A ratio for symmetrical convergence.

Iso Vergence \& Isoaccommodation Circles

Ideal AC/A decreases w/ azimuth

Cross-coupling interactions and gaze azimuth

Ideal convergence bias along iso-accommodation circle

Ideal accommodation bias along iso-vergence circle

Stimulus AC/A ratio $3.6 \Delta / 1 \mathrm{D}$ stimulus

Response AC/A ratio $4.0 \Delta / 1 \mathrm{D}$ response

Two clinical measures of the AC/A ratio:
Calculated AC/A
$\mathrm{AC} / \mathrm{A}=\mathrm{IPD} \mathrm{cm}+[$ Phoria (near) - Phoria (far) $] \mathrm{x}$ VD m
$\mathrm{AC} / \mathrm{A}=\mathrm{IPD} \mathrm{cm}+[$ Phoria (near) - Phoria (far) $] / \mathrm{MA}$
Gradient AC/A
$\mathrm{AC} / \mathrm{A}=$ change in phoria / change in accommodation
$\mathrm{AC} / \mathrm{A}=$ Phoria without the lens - phoria with 1D lens.

Calculated AC/A

$$
\begin{aligned}
& \mathrm{IPD}=6 \mathrm{~cm} \\
& \mathrm{Pn}=-4 \text { exo } \\
& \mathrm{Pf}=+1 \text { eso } \\
& \mathrm{VD} \text { near }=0.4 \mathrm{~m} \\
& \mathrm{AC} / \mathrm{A}=6+[-4-1] / 2.5=4 / 1 \\
& \mathrm{IPD}=7 \\
& \mathrm{Pn}=-4 \text { exo } \\
& \mathrm{Pf}=+1 \text { eso } \\
& \mathrm{VD}=0.4 \mathrm{~m} \\
& \mathrm{AC} / \mathrm{A}=7+[-4-1] / 2.5=5 / 1
\end{aligned}
$$

Gradient AC/A

Near phoria without added lenses $=3$ Exo

Near phoria with $\mathrm{a}+2 \mathrm{D}$ added lens $=12$ Exo
$[-3-(-12)] / 2 \mathrm{D}=9 / 2=4.5 / 1$

Accommodation stimulus-accommodative response function

Accommodation stimulus-convergence response function

Response AC/A ratio is linear until the amplitude is reached and then it becomes infinite.

Temporal stability of the AC/A ratio over 2 months

Affects of Age on AC/A

The AC/A increases with age because the amplitude of accommodation decreases with age and extra accommodative effort is needed near the amplitude of accommodation.

The CA/C ratio is usually not measured clinically because it is not part of the Maddox classification and traditionally it has not been included in the clinical analysis of binocular vision.

The CA/C can be measured clinically by stimulation convergence with a photograph of an out-of-focus vertical bar. Its too blurred to stimulate accommodation but it stimulates convergence. Changes of accommodation stimulated by convergence are measured with retinoscopy.

Typical values for the CA/C are ($1 \mathrm{MA} / 1 \mathrm{D}$) in the early 20s, but it declines as the amplitude of accommodation declines with age.

The CA/C ratio decreases with Age (loss of amplitude of accommodation)

Difference of Gaussians (DoG)

Elevation of AC/A ratio by Atropine

Amplitude of the AC/A increases with velocity of Accommodation accommodative vergence

Low Frequency

$\mathrm{AC} / \mathrm{A}=0 \Delta / \mathrm{D}$

Stim.
$(0.06 \mathrm{~Hz}$)

$\mathrm{AC} / \mathrm{A}=4 \Delta / \mathrm{D}$

Stim.
0.25 Hz)

Dynamics of AC/A
Amplitude of the CA/C increases with velocity of convergence VERGENCE ACCOMMODATION
Low Frequency

Accom.

$\mathrm{CA} / \mathrm{C}=0 \mathrm{D} / \mathrm{MA}$ Stim. 0.05 Hz)

Moderate Frequency
Left Eye

Accom.

$\mathrm{CA} / \mathrm{C}=1 \mathrm{D} / \mathrm{MA}$

Fast accommodation stimulates AC/A but slow accommodation does not.

Fast and slow accommodation are controlled separately.
Fast accommodation is referred to as phasic accommodation.
Slow accommodation is referred to as tonic accommodation.

Slow accommodation produces adaptive changes of the resting focus.

Fast convergence stimulates CA / C but slow convergence does not.

Fast and slow convergence are controlled separately.
Fast convergence is referred to as phasic convergence.
Slow convergence is referred to as tonic convergence.
Slow convergence produces adaptive changes of the phoria.

Not all components of accommodation and convergence stimulate cross-links. Phasic stimulates cross links but tonic does not. The balance of activity of Phasic and Tonic determine the AC/A ratio

Fatigue of accommodation and convergence can cause temporary changes in the AC/A ratio:

A high AC/A decreases when tonic convergence is fatigued. A low AC/A increases when tonic accommodation is fatigued.

With fatigue, phasic activity is not relieved by tonic adaptation and the cross-link interactions change.

accommodative vercence

Accommodative convergence is high before fatigue of convergence

Accommodative
convergence is low after fatigue of convergence

RIGOT ETE \qquad

Accommodative
convergence is low before fatigue of accommodation
aCCOMmODATIVE VERCENCE

Accommodative
convergence is higher after fatigue of accommodation

Lab \# 2- Accommodative Convergence

Align the left stigma with
\mathbf{E} to measure convergence

Focus the right stigma to measure accommodation

